
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 14 (2004) 1548–1557 PII: S0960-1317(04)79765-X

Dimensional errors in LIGA-produced
metal structures due to thermal expansion
and swelling of PMMA
S K Griffiths, J A W Crowell, B L Kistler and A S Dryden

Sandia National Laboratories, Livermore, CA 94551-0969, USA

Received 23 April 2004
Published 9 August 2004
Online at stacks.iop.org/JMM/14/1548
doi:10.1088/0960-1317/14/11/017

Abstract
Numerical methods are used to examine dimensional errors in metal
structures microfabricated by the LIGA process. These errors result
from elastic displacements of the PMMA mould during electrodeposition
and arise from thermal expansion of the PMMA when electroforming is
performed at elevated temperatures and from PMMA swelling due to
absorption of water from aqueous electrolytes. Both numerical solutions
and simple analytical approximations describing PMMA displacements
for idealized linear and axisymmetric geometries are presented and
discussed. We find that such displacements result in tapered metal
structures having sidewall slopes up to 14 µm per millimetre of height
for linear structures bounded by large areas of PMMA. Tapers for
curved structures are of similar magnitude, but these structures are
additionally skewed from the vertical. Potential remedies for reducing
dimensional errors are also discussed. Here we find that auxiliary
moat-like features patterned into the PMMA surrounding mould cavities
can reduce taper by an order of magnitude or more. Such moats
dramatically reduce tapers for all structures, but increase skew for
curved structures when the radius of curvature is comparable to the
structure height.

1. Introduction

The LIGA process [1–3] employs deep x-ray lithography and
electrodeposition to produce metal structures having lateral
dimensions up to several centimetres and feature sizes down
to 1 µm or somewhat less. Lithography for this process
is performed using synchrotron radiation and a patterned
absorber mask to expose a thick PMMA resist. The resist
is developed to remove irradiated areas, producing a non-
conducting PMMA mould, and the mould is then filled via
electrodeposition to form either individual metal parts or a
tool for making replicas by embossing or injection moulding.

Many factors influence the overall accuracy of a finished
metal structure. Dimensional errors may result directly
from errors in the PMMA mould due to synchrotron beam
divergence [4, 5], fluorescence radiation [4–8], photoelectrons
[4, 5, 9, 10] and thermal expansion of the mask [11]. These
generally produce dimensional discrepancies between the

mask pattern and final structure of at most a few micrometres.
Errors in metal structures can also result from elastic
displacements of the PMMA during the electroforming
process [12–14]. PMMA has a coefficient of thermal
expansion of about 7×10−5 ◦C−1 [15], so a rise in temperature
of 30 ◦C (50 ◦C plating temperature) gives a linear strain of
more than 0.2%. Water absorbed from the electrolyte bath
may produce even larger strains, up to 0.4% [12, 16], and
the combined strains due to absorption and thermal expansion
may reach 0.6%. Strains of this magnitude are fairly small,
but they can nevertheless lead to large dimensional errors in
LIGA-produced metal structures. As illustrated in figure 1,
these errors are manifested mainly in the form of tapered metal
structures having sidewall slopes up to about 14 µm mm−1.
Such errors exceed all lithographically-induced errors by an
order of magnitude or more [1–11].

Only one previous study has addressed the impact
of PMMA swelling on dimensional errors. Ruzzu and
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Figure 1. Optical micrograph in the cross-section of a
LIGA-produced nickel structure electrodeposited at 50 ◦C. The
width of this beam-like structure varies from 21 µm near the bottom
to 14 µm at the top. Mean sidewall slopes are 14 µm mm−1; overall
taper is 28 µm mm−1.

Matthis [12] examined both water absorption and thermal
expansion of PMMA in nickel-sulfamate electrolyte and found
that the combined strain reached about 0.5% at a temperature
of 52 ◦C following 20 h of submersion. Their sample thickness
was 1 mm. At 23 ◦C, they reported a total strain of about 0.1%
following 100 h of submersion. They also investigated the
effect of this strain on a specific annular feature. For a 500 µm
resist thickness, they reported a growth of the radius of 7 µm
at the top of the annulus at 52 ◦C, corresponding to a
mean sidewall slope of 14 µm mm−1; at 23 ◦C, this
radial expansion was reduced by a factor of two. In this
predominantly experimental effort, the authors additionally
recommended improvements to the design that reduced
dimensional errors and proposed an analytical expression
for PMMA displacement along the sidewall of an annulus.
This expression, based on an analogy to beam bending, was
discussed only in the context of scaling and was not related to
thermal or absorption strains.

The present paper addresses PMMA swelling and its
effect on dimensional errors using theoretical means. To
help understand and remedy these errors, we have computed
sidewall displacements for PMMA features of various
geometries and have fit the numerical solutions to obtain
simple analytical expressions describing top-surface sidewall
displacements as a function of the geometry and strain. Both
linear and axisymmetric geometries are considered. The
resulting expressions are useful in estimating dimensional
errors for a variety of structure geometries and in the design
of auxiliary features patterned into the resist to reduce these
errors.
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Figure 2. Schematic of sidewall displacements due to expansion of
the PMMA. Sidewalls become sloped and slightly curved because
the bottom surface is attached to a rigid substrate. Displacements δ
scale with the height h when w/h is large.

2. PMMA strains and displacements

Goods et al [16] investigated PMMA swelling due to thermal
expansion and water absorption for cases in which the PMMA
is unconfined. They examined absorption-induced strains
in de-ionized water and electrolyte baths of both nickel-
sulfamate and nickel–Watts for three linear PMMA materials.
They found that the rate of water absorption was strongly
dependent on temperature, but that the equilibrium saturation
and equilibrium swelling were remarkably insensitive to
temperature between 4 and 50 ◦C. They further found that
equilibrium strains do not vary much with material type, but do
depend on bath composition. The reported equilibrium linear
strain for water was about 0.41%, that for nickel–Watts was
0.38% and that for nickel-sulfamate was about 0.28%. Their
reported value for the linear coefficient of thermal expansion
was ∼7.5 × 10−5 ◦C−1 for all three PMMA materials.

Now consider the geometry shown in figure 2 depicting a
mask, developed PMMA and a substrate typical of LIGA. The
mask here defines a long linear feature in the PMMA having
a nominal width w and height h, and this PMMA bounds a
linear mould cavity of nominal width d. If this PMMA were
a part of a simply connected freestanding sheet, and if strains
in the PMMA were uniform and isotropic, then all of these
dimensions, including the cavity width, would simply grow by
the magnitude of the linear strain when the PMMA expands.
In such a case, the PMMA sidewalls would remain parallel and
vertical, and relative dimensional errors in the metal structure
would be identical to the total strain. This is at most about
ε = 0.6% accounting for both thermal expansion and
absorption of water, so the absolute error in a metal structure
100 µm wide would be only about 0.6 µm. Such errors
would be quite acceptable for nearly all applications of LIGA.
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Moreover, even these small errors could be corrected with ease
using an appropriately scaled mask pattern.

Uniform and isotropic expansion of the PMMA is not
possible, however, because the resist is bonded to a rigid
substrate. The role of this substrate is to hold isolated PMMA
features in their correct relative positions and to provide a
continuous conductor for electrodeposition. The substrate
and adhesion to the substrate are thus essential elements of
the process. Further, the coefficient of expansion of all
common substrate materials is negligible in comparison to
that of PMMA, and these materials do not absorb water.
Confinement by the substrate consequently requires nearly
zero displacement of the PMMA at the substrate interface.
Under this condition, PMMA expansion yields sidewall
displacements into the mould cavity in regions above the
substrate, producing a tapered metal structure and potentially
large dimensional errors.

When the PMMA is confined by a substrate and the
width w of the PMMA is large, each top-surface sidewall
displacement δ is about twice the product of the strain and the
resist thickness (this is demonstrated shortly). In this case,
the error in the width of a metal structure is 2δ ≈ 4.6εh,
and this yields a top-surface error of about 28 µm for a
total strain of 0.6% and a structure height h = 1 mm. Here
the structure discussed above will have the nominal width of
100 µm at the bottom, but the top-surface width will be only
72 µm. Such dimensional errors are unacceptable in metal
piece-parts for all but rudimentary applications, and tapered
structures cannot be corrected using a scaled or biased mask
pattern. Moreover, replication tools fabricated by over-plating
the resist may exhibit large adverse sidewall drafts, leading
to tool damage or damage to the replica during moulding or
embossing.

3. Linear features

We first examine long linear features as shown previously
in figure 2. Without loss of generality, the width and
displacements can be considered in the dimensionless form
w/h and δ/εh. For this geometry, normalized top-surface
lateral displacements were computed using ABAQUS [17]
over a wide range of the normalized width. Swelling
was represented by a uniform isotropic unit strain, and
because sidewall displacements are always proportional to the
strain when strains are small, the normalized displacement
depends only on w/h. Boundary conditions used for these
calculations are zero displacement on the lower surface; all
other boundaries are free surfaces. Poisson’s ratio for PMMA
is taken as ν = 0.35 [17], and the plane-strain approximation
is employed as appropriate for long features.

The numerical solutions are shown in figure 3 (symbols)
in the form of the normalized displacement δ/εh as a function
of the normalized width w/h. These values were fit to obtain
a simple analytical expression describing the normalized top-
surface sidewall displacement as a function of the geometry
and strain. The result is

δ

εh
= f (ω) = 162ω + 49ω3

240 + 43ω + 21ω3
ω = w

h
(1)

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t -
 δ

/ε
h

Normalized Width - w/h 

Equation 1

ABAQUS

ν = 0.35

Figure 3. Normalized displacement of top-surface sidewall for long
linear features. Displacements grow with increasing width w of the
PMMA feature until the width is about five times the PMMA
thickness h.

where again ε is the total linear strain, h is the PMMA thickness
and w is the PMMA feature width. A plot of this function
is also shown in figure 3 (curve). The relative discrepancy
between this analytical result and the numerical solutions is
less than 3% over the full range of widths. Note that the
displacements of equation (1) are proportional to the sum
1 + ν for the plane-strain conditions of long linear features,
so the results of this expression can be scaled accordingly for
values of Poisson’s ratio other than 0.35. Also note that the
correct asymptotic behaviour for top-surface displacement as
defined in figure 2 is δ = εw(1 + ν)/2 when w/h is small;
the value 162/240 = 0.675 is identical to (1 + ν)/2 for
ν = 0.35.

We see in figure 3 that normalized displacements depend
strongly on the feature width when w/h is small, but are
independent of the width when w/h is large. This is also
apparent from the asymptotic behaviour of equation (1). For
small and large widths, the asymptotes are

δ ≈ 0.68εw as
w

h
→ 0 (2a)

and

δ ≈ 2.3εh as
w

h
→ ∞. (2b)

Accordingly, lateral displacements are proportional to the
PMMA feature width and independent of h when w/h is
small; however, they are independent of w and proportional
to the PMMA thickness when w/h is large.

The form of equation (2b) indicates a particularly serious
problem of dimensional errors in metal structures. Given a
cavity width d and symmetric PMMA features defining this
cavity, the relative error e/d in the structure width can be
expressed as

e

d
= 2δ

d
≈ 4.6ε

h

d
= 4.6εA

w

h
> 5 (3)

where A = h/d is the aspect ratio of the metal structure. For
a linear structure, the relative error in the structure width is
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thus proportional to the structure aspect ratio when the lateral
extent of the PMMA bounding the structure is large compared
to the height. Moreover, the magnitude of this error is large
even for modest aspect ratios. For an aspect ratio of just 10 and
a total strain of 0.006, the expected relative error is 28% for
w/h > 5; it is still nearly 10% at this aspect ratio for a
total strain of just 0.2%. Ruzzu and Matthis [12] noted
that errors in their metal structures were about half of those
measured in the PMMA, but this cannot be expected to be true
for all PMMA geometries.

Equation (3) also indicates that PMMA displacements
will limit the maximum producible aspect ratio of a metal
structure when w/h is large. If the combined displacement
e = 2δ exceeds the cavity width d, then the cavity will close at
the top. The condition e/d = 1 therefore defines the maximum
aspect ratio as h/d = 1/4.6ε, and the value of this maximum
is just 36 for a strain of 0.6%. The maximum aspect ratio
increases to 72 for a strain of 0.3%.

To further illustrate the use of these equations, consider a
resist of height h = 100 µm, a PMMA feature width of w =
1000 µm and a total linear strain of 0.006. These dimensions
yield ω = w/h = 10, and equation (1) for this value gives
δ/εh = 2.3 or δ = 1.4 µm for each sidewall displacement.
Increasing the height to 250 µm, but leaving all else the
same, the normalized width becomes ω = 4, and equation (1)
gives δ/εh = 2.15 or δ = 3.2 µm. Here the height increased
by a factor of 2.5, and the displacement increased by 2.3.
This is an expression of the linear scaling of equation (2b)
for cases in which w/h is large. Increasing the height again
to 1000 µm yields ω = 1 and δ/εh = 0.69 or δ = 4.2 µm.
Now, a factor of four increase in the height increased the
displacement by only 40%, and this is an expression of the
transition to equation (2a). Indeed as the height increases
still further, the displacement becomes independent of
height and is instead determined entirely by the PMMA
feature width, which is fixed in the present example. In this
limit, the displacement is always 4.0 µm. Note that this is
slightly smaller than the displacement for h = 1000 µm,
so displacements do not always increase monotonically
with increasing height. For w = 1000 µm, the maximum
displacement is δ ≈ 4.4 µm, and this occurs for h ≈ 575 µm.

Now consider a geometry in which the height is fixed but
the cavity is bounded by PMMA features of variable width.
Equation (1) again yields the limit δ = 2.3εh for large w/h.
However, displacements are reduced from this limit by a factor
of 3.3 to δ = 0.69εh for w/h = 1. For w/h = 0.5, the
displacement is reduced by 7, and for w/h = 0.2 the reduction
is a factor of almost 18. Dimensional errors due to PMMA
swelling and thermal expansion can thus be reduced by more
than an order of magnitude through controlling the geometry
of the PMMA near mould cavities. This is discussed further
in a later section on potential remedies.

In addition to sidewall displacements, strains due to
thermal expansion and water absorption may lead to buckling
of PMMA features when their aspect ratio is large. To examine
this issue, the ABAQUS code was used to compute minimum
strains for the onset of buckling of long linear PMMA features.
This bifurcation buckling analysis yields the least-stable mode
of deformation and the accompanying minimum strain as a
function of the normalized width w/h and the ratio L/h
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Figure 4. Minimum normalized feature width for stable PMMA
features. Features of widths smaller than these values will buckle,
producing wavy sidewalls at the top of a metal structure.

where L is the feature length. As before, these features are
constrained to zero displacement on the lower boundary; all
other surfaces are free boundaries, including the feature ends.
In all cases examined, the least-stable mode was a periodic
deformation of the top surface having a wavelength about
five times the height provided the length-to-height ratio was
large. The magnitudes of the buckling displacements were not
computed; however, any such buckling is likely to result in
unacceptable dimensional errors.

The computational results are shown in figure 4 (symbols)
as the critical normalized width w/h in terms of L/h for
various values of the strain. This is the minimum value of w/h

for which buckling will not occur for a prescribed normalized
length and strain. Regions above or to the left of each curve
are therefore stable; those below or to the right will buckle.
These numerical results are well approximated by

wmin

h
= √

ε
46λ + 14λ3

497 + 72λ + 15λ3
λ = L

h
. (4)

This result is also shown in figure 4 (curves). The asymptotic
behaviour of this expression for large L/h is wmin/h ≈
0.93

√
ε. As such, the maximum stable aspect ratio h/w for a

very long PMMA feature (L/h > 10) is inversely proportional
to the square-root of the strain. For a strain of 0.6%, this
maximum aspect ratio is about 14. Shorter features (L/h < 5)
are stable at much higher aspect ratios.

4. Axisymmetric features

We now examine sidewall displacements for axisymmetric
features in the patterned PMMA. A schematic of such a feature
and the associated nomenclature are shown in figure 5. Here
the geometry is specified by the height h, and inner and
outer radii ri and ro, or one radius and a width w. The
behaviour of these annular features is much more complex
than that of linear features, so several special cases will be
investigated.
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Figure 5. Schematic of axisymmetric feature. Thermal expansion
and water absorption result in a PMMA feature that is wider at the
top and skewed outward from the initial vertical position.
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Figure 6. Normalized top-surface sidewall displacements for an
isolated hole in PMMA and a PMMA post or disc. Maximum
sidewall displacements always occur at the top surface.

The two simplest cases of axisymmetric geometry are
the isolated hole and the post (or disc). The first of these
corresponds to a prescribed inner radius and the limiting
condition ro → ∞; as a practical matter this condition can
be considered as w/h > 7. Figure 6 shows the computed
normalized top-surface displacement (symbols) on the inner
radius of such a hole as a function of the normalized inner
radius ρi = ri/h. As with the linear features discussed
above, boundary conditions used in these calculations are
zero displacement on the lower surface and stress-free surfaces
everywhere else. These numerical results were fit to obtain

δi

εh
= −g(ρi) = − 26ρi + 49ρ2

i

13 + 16ρi + 21ρ2
i

ρi = ri

h
. (5)

This expression is shown in figure 6 by the curve labelled
‘hole’. The maximum discrepancy between equation (5) and
the numerical results is about 4% for all radii and thicknesses.
Note that the correct asymptotic behaviour for top-surface
radial displacement of a hole boundary is δi = −εri(1 + ν)/

(1 − ν) when ri/h is small. The value 26/13 = 2 in
equation (5) thus approximates the ratio (1 + ν)/(1 − ν) ≈
2.08 for ν = 0.35.

From equation (5), it is straightforward to show that the
relative error in the diameter 2r of a metal post or disc produced
in a cylindrical mould cavity is

e

2r
= 2δi

2r
≈ 2.3ε

h

r
= 4.6εA A = h

2r
< 0.05 (6a)

e

2r
= 2δi

2r
≈ 2ε A = h

2r
> 1. (6b)

This behaviour qualitatively differs from that of a linear feature
as given in equation (3). Here the relative error scales with
the aspect ratio only when the aspect ratio is small. For
high aspect ratios, the relative error is independent of both
the radius and height. As such, PMMA displacements never
limit maximum aspect ratios for metal posts.

Figure 6 additionally shows computed normalized
displacements for a PMMA post or disc as a function of the
normalized outer radius ρo = ro/h. Here the width w and
outer radius ro are equal, and the inner radius is zero. These
numerical results are well described by

δo

εh
= q(ρo) = 96ρo + 49ρ

8/3
o

96 + 18ρo + 21ρ
8/3
o

ρo = ro

h
(7)

and the accuracy of this expression is better than 2%. In
this case, relative errors in the diameter of a hole in a metal
structure produced from a PMMA post are

e

2r
= 2δ

2r
≈ 2.3ε

h

r
= 4.6εA A = h

2r
< 0.1 (8a)

e

2r
= 2δ

2r
≈ ε A = h

2r
>

1

2
. (8b)

Relative errors for metal posts and holes in metal thus exhibit
similar behaviour.

Displacements for both holes and posts in PMMA are
defined such that a positive displacement increases the radius;
negative displacements reduce the radius. Consequently, metal
posts or discs (formed in PMMA holes) will always have a
reduced radius at the top; the top surfaces of holes (formed
around PMMA posts) will always be enlarged. Moreover,
these results describe the maximum sidewall deviation of a
metal structure as the maximum sidewall deviation of these
PMMA features always occurs at the top surface.

PMMA displacements in axisymmetric geometries are
more complex for features having an inner radius that is
nonzero and an outer radius that is finite. For such annular
features, displacements of the inner and outer radii differ
significantly, and normalized forms of these displacements
no longer exhibit simple monotonic growth with increasing
feature width.

Top-surface displacements on the inner radius of
annular PMMA features were computed using ABAQUS for
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Figure 7. Normalized top-surface displacements on the inner radius
of an axisymmetric PMMA feature. Inner-radius displacements may
be positive or negative and pass through zero.

prescribed values of the normalized inner radius ρi = ri/h

and normalized width ω = w/h. The numerical results
(symbols) are shown in figure 7. Here we see that top-
surface displacements are positive and proportional to the
radius in the limit w/h → 0. For any fixed and finite radius,
these displacements increase with increasing width when the
width is small, but reach a maximum and then decrease for
still larger w/h. The displacements cross zero and become
negative for sufficiently large w/h, approaching asymptotic
values that depend only on the radius. These asymptotes are
the displacements for holes given previously in figure 6 and
equation (5).

Based on these observations, we find that the numerical
solutions of figure 7 can be approximated by a composite
expression using the displacements for linear features and
holes. The result is

δi

εh
= −(1 − β2)f (ω) − β2g(β2ρi) + s(ρ̄, ω) (9a)

β = w

ro

= ω

ρo

= ω

ρi + ω
ρ̄ = ρi + ρo

2
(9b)

where the function f is given by equation (1) and the function
g is given by equation (5). Here the argument of the function
g is β2ρi . Results from this expression are also shown in
figure 7 (curves); these agree with the numerical results to
within an absolute error of 0.12 for all values of the radius
and feature width.

The first two terms of equation (9a) represent a weighted
average of the displacements for a linear feature (dominant
for β � 1) and those for a hole (dominant for β → 1). The
remaining term accounts for skewing of the feature, which is
dominant when ρ̄ is large but the product ρ̄ω is small. It is
given by

s(ρ̄, ω) = ρ̄

[
9 + 8ρ̄ω + 320ω2

9 + 227ω2 + 87ρ̄2ω3 + 6ρ̄3ω3

]
. (10)
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Figure 8. Top-surface displacements at the outer radius of an
axisymmetric PMMA feature. Displacements are always positive,
but exhibit minima at some optimum value of w/h.

The asymptotic behaviour of this expression is

s ≈ ρ̄ as ρ̄ω → 0 (11a)

s ≈ 4ρ̄

3(ρ̄ω)2
≈ 0 as ρ̄ω → ∞. (11b)

Skewing is therefore most significant when the radius ri is
large and the width w is very small such that wri � h2.

Note that the term s(ρ̄, ω) is the only positive contribution
to the displacements of equation (9a) and that the zero crossing
arises from a balance between outward (positive) skewing
and inward (negative) displacements due to expansion of the
feature wall. The condition yielding this zero of the net
displacement is roughly

ωz ≈ 27ρ
1/3
i + 16ρ2

i + 13ρ3
i

10ρi

(
3 + ρ

7/3
i

) . (12)

Equation (12) therefore provides something of an optimum
condition, but only in the sense that the top- and bottom-surface
displacements are both zero. Displacements at intermediate
positions along the feature height are not zero, but are
nevertheless relatively small.

Similar results for displacements on the outer radius
are shown in figure 8. Symbols represent results computed
using ABAQUS, and positive displacements correspond to
an increased radius. As with inner-radius displacements,
top-surface outer-radius displacements are positive and
proportional to the radius in the limit w/h → 0. However,
displacements of the outer radius are always positive, and these
displacements exhibit a minimum instead of a zero crossing.
This is because the individual contributions from skewing and
expansion of the feature wall are both positive on the outer
radius.

The numerical solutions in figure 8 were also fit by way
of a composite expression, this time using the displacements
for linear features and posts as the basis functions. Here the
result is

δo

εh
= (1 − β3)f (ω) + β3q(ρo) + (1 − β5/3)s(ρ̄, ω) (13)
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where the function f is given by equation (1), q is given by
equation (7), β and ρ̄ are given by equation (9b) and s is given
by equation (10). This expression is accurate to within 9% for
all ρo and ω; it is accurate to within 5% for ρo > 5.

The optimum condition yielding the minimum of
equation (13) is reasonably approximated by

ωmin ≈ 8ρ2
o

10 + 5ρ
7/3
o

(14)

for ρo > 1. The global minimum vanishes for ρo < 1
(approximately) and is replaced by local minima at the
extremes of ω = 0 and ω = ρo. The smaller of these
minima occurs for ω = 0, so as a practical matter the optimum
condition for small radii is usually ω = ρo for ρo < 1. In
this regime, the magnitude of the corresponding minimum is
roughly δo ≈ ερo. For larger radii, the magnitude of the
minimum displacement first increases, reaches a maximum of
δo/εh ≈ 1.6 for ρo ≈ 2.3 and then decays for still larger
radii. The condition ρo ≈ 2.3 thus represents the worst-case
geometry, but minimum displacements are still large over a
very wide range of radii (δo/εh > 1 for 1 < ρo < 8).

Comparing the results of figures 6 and 8, we see that
outer-radius top-surface displacements for annular features
are always greater than those for a post or disc, except when
the normalized radius ρo is about five or more and the
normalized feature width ω is less than seven. For ρo < 5,
displacements for annular features are very much larger than
for the solid feature when ω is small, and this is due entirely
to skewing of the feature walls. Normalized top-surface
displacements for annular features at ω > 7 are essentially
independent of both the radius and the feature width.

Although these computed displacements on the inner and
outer radii of annular features are based on fully axisymmetric
geometries, the results should yield good estimates of
maximum displacements for arc segments of fixed radius
provided that the arc length along the segment is at least
several times the resist thickness. This can be expressed as
ρ̄θ > 5, where θ is the included angle of the arc. Likewise,
they should yield good estimates for displacements along any
curved feature provided the change in radius with arc length
is small compared to the normalized radius ρ̄.

The preceding results all describe displacements of the
PMMA, not variation in the dimensions of metal structures.
These structure dimensions can be expressed in terms of the
PMMA displacements in the form of an overall taper Tm and
a mean skew Sm of the centreline of the structure. If the
metal were all deposited following complete expansion of the
PMMA, this taper and skew would be

Tm = δo − δi (15a)

and

Sm = δi + δo

2
(15b)

where δi and δo are the PMMA displacements given above.
A positive taper indicates a narrowing at the top of the
metal structure; a positive skew indicates radial displacement
outward at the top.

5. Comparison with measurements

The only published measurements of PMMA displacements
due to absorption and thermal expansion are those of Ruzzu
and Matthis [12]. They measured the radial growth at the top of
an annular feature subject to submersion in a nickel-sulfamate
electrolyte at both 23 and 52 ◦C. The reported growth of the
radius was 3.5 µm for submersion at 23 ◦C and 7 µm for
52 ◦C. They did not indicate whether these measurements
applied to the inner or outer radius. They also reported radial
displacements for a disc, but the disc radius was not specified.

Dimensions of their annulus were ri = 1025 µm, w =
100 µm and h = 500 µm. These yield the dimensionless radii
ρi = ri/h = 2.05 and ρo = ro/h = (ri + w)/h = 2.25;
the corresponding dimensionless width is ω = w/h = 0.20
and the parameter beta is β = ω/ρo = 0.089. For these
values, equation (9a) yields δi/εh = 2.4 for the normalized
inner displacement and equation (13) gives δo/εh = 2.6
for the outer displacement. For submersion at 52 ◦C in
nickel-sulfamate electrolyte, the total linear strain [16] is
ε ≈ 0.0054 due to water absorption (0.28%) and thermal
expansion (0.26%). Based on this value and h = 500 µm, the
calculated inner and outer displacements are 6.5 and 7.0 µm,
respectively, and the mean top-surface radial growth is
(δi + δo)/2 ≈ 6.8 µm. This agrees very well with the
measured value of 7 µm reported by Ruzzu and Matthis. For
submersion at 23 ◦C, the total strain is mostly due to water
absorption, ε ≈ 0.0028 [15]. In this case, the displacements
computed using equations (6) and (10) are 3.4 and 3.6 µm
for the inner and outer radii, respectively. These yield a mean
outward displacement of 3.5 µm, which agrees exactly with
the measured value.

Note that the estimated 90% saturation times for this
annular feature are about 90 min at 23 ◦C and only 15 min at
52 ◦C. These values are based on numerical simulations using
measured diffusivities [16] for nickel-sulfamate and take into
account exposure to the solution on both the inner and the
outer radii. The latter of these results is in good agreement
with the observation by Ruzzu and Matthis that the annulus
reached maximum diameter in just less than 2 h for submersion
at room temperature (their figure 5). Such small times result
from the small 100 µm feature width and the fact that both
faces of the feature contact the electrolyte. In contrast, the
90% saturation times based on the full 500 µm thickness and
electrolyte contact at the top surface only are about 140 h and
27 h at 23 and 52 ◦C, respectively. Transients resulting in
partial saturation during the course of electrodeposition may
therefore play an important role in dimensional errors when
the resist thickness is large and the lateral extent of PMMA
features is large compared to the thickness.

6. Potential remedies

PMMA displacements for any fixed strain can be reduced
significantly through the use of auxiliary moat-like channels
surrounding mould cavities [13]. Illustrated in figure 9, such
channels reduce PMMA displacements and the associated
taper of metal structures by reducing the value of w/h for the
PMMA features bounding the mould cavity. By equation (1),
the thickness of the moat wall (distance w between the cavity
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w
d

Figure 9. A moat-like relief channel (cross-hatched) patterned into
the PMMA surrounding a structure (light) can dramatically reduce
sidewall taper if it is placed close to the mould cavity. A moat width
at least as large as the PMMA thickness will help ensure that these
auxiliary features do not develop slowly due to transport limitations.

and moat) for a linear structure must be small compared to the
resist thickness in order for the moat to be highly effective.
For an isolated linear structure and no moats, each top-surface
displacement is δ = 2.3εh. For w/h = 0.5, the displacement
drops to δ = 0.33εh, and for w/h = 0.2 the displacement
is just δ = 0.13εh. In the latter case, the moat reduces
displacements by a factor of 18. Such displacements may be
acceptably small, but dimensional errors in metal structures
nevertheless grow in proportion to the structure height if both
the structure width d and normalized moat wall thickness w/h

are fixed.
Alternatively, the moat wall thickness can be chosen as

a fraction of the width d of the cavity or metal structure.
For w/d = 1, the relative error in the structure width is
2δ/d = 1.2ε if h/d > 1. The relative error in this case is
independent of the structure aspect ratio, but the aspect ratio
of the moat wall may be large and buckling may occur. Note
that the condition w/d = 1 is always realized in a uniform
grid of lines and spaces having equal widths. As a result, the
dimensional accuracy of such grids should always be good
provided that buckling does not occur.

The design of moats for curved geometries is more
complex. Inner-radius PMMA displacements can be reduced
to zero at the top surface by selecting the appropriate value of
w/h using equation (12). This will produce a metal structure
having an outer radius with zero mean vertical slope, though
sidewall deviations along the height of the structure will not
vanish. Outer-radius PMMA displacements can be minimized
using equation (14), though the minimum displacement will
still be large for radii in the range h < ro < 8h.

Moat designs for curved geometries are further
complicated by the fact that overall taper and skew of the
metal structure trade against one another. Taper is generally

small for small w/h and increases as w/h becomes large.
Skew, on the other hand, is large when w/h is small,
but is small when w/h is large. Optimum moat designs
must therefore consider whether accuracy of structure width
or verticality of the structure is more important in a
given application. The interested reader can verify these
observations using equation (15) and appropriate geometries
for the two PMMA features bounding a metal structure.

Moats thus offer a partial solution to the problem of
PMMA swelling. They are highly effective in reducing
dimensional errors for linear structures and for the outer
radius of curved metal structures (inner radius of PMMA);
however, they are not very effective in reducing errors on
the inner radius of metal structures (outer radius of PMMA).
Further, moats cannot be employed in some geometries, as the
topology of a metal structure may not allow space for proper
moat placement. Moats may also interfere with structure
function in some geometries, prohibiting their use altogether.
Additional remedies are therefore required.

PMMA swelling is important in optics, and several papers
have been published on inorganic coatings to inhibit water
absorption [19, 20]. Such coatings will be a challenge for
LIGA, however, since they must be applied after development,
must be non-conducting, must be conformal in features of high
aspect ratio, cannot permanently cover the plating base and
must survive prolonged electrolyte exposure. Diffusivities of
water in nearly all polymers are within an order of magnitude
of that for PMMA, so organic coatings of acceptable thickness
are not likely to provide much benefit. This probably
includes hydrophobic coatings, as they will directly contact
water in the electrolyte regardless of their preference to do
otherwise.

Alternatives to linear PMMA as the LIGA x-ray resist
may also reduce dimensional errors. Cross-linked PMMA is
already established as a viable alternative to linear PMMA for
use in LIGA [21, 22], and this may swell less than the linear
material due to decreased chain mobility. SU-8 is sometimes
employed as an x-ray resist, and water absorption for this
should be very low. However, SU-8 has its own issues of
dimensional accuracy owing to ∼7% shrinkage during post-
exposure bake [23]. Polylactides have also been considered
for use as an x-ray resist [24]; water absorption for these
materials is unknown. Several other polymers are known to
absorb very little water, including polyethylene, polystyrene,
polysulphone, polyphenyloxide and polytetrafluoroethylene
[15]. Most of these will not be suitable as resists because they
do not degrade sufficiently in response to radiation, cannot be
solvent stripped or because they have a very high coefficient
of thermal expansion.

One promising (though untried) remedy for PMMA
swelling is to bond the PMMA to the substrate at an elevated
temperature. If the PMMA and substrate are bonded at the
temperature of electrodeposition, then the thermally-induced
displacements during electrodeposition will nominally vanish,
even if the x-ray exposure is performed at ambient temperature.
The success of this approach will require that the PMMA
does not creep between bonding and the completion of
electrodeposition. Alternatively, the bonding could be
performed at a temperature above that of electrodeposition.
In this case, the thermal strain initially present in the PMMA
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would offset thermal displacements during electrodeposition
and at least a portion of those displacements due to water
absorption.

Finally, reducing electrodeposition temperatures from
50 ◦C to near ambient will reduce dimensional errors by 30 to
40%, but the cost of this is very high. Temperature is one of
only two main parameters varied to control electrodeposition
processes, and nearly all traditional plating processes are
performed at elevated temperature. As such, plating at near-
ambient temperature does not seem like a viable long-term
remedy to this problem.

7. Summary

Metal structures produced by the LIGA process may
exhibit large dimensional errors due to PMMA swelling
by thermal expansion and the absorption of water during
electrodeposition. These dimensional errors appear mainly
in the form of tapered metal structures having a reduced width
at the structure top, and the magnitude of this taper may reach
28 µm mm−1, under the worst conditions, if mitigating
measures are not used. PMMA swelling is thus by far
the largest single source of dimensional error for the LIGA
process.

Top-surface dimensional errors for isolated linear
structures bounded by large regions of PMMA are proportional
to the product of the strain and structure height. Relative errors
in structure width are therefore proportional to the structure
aspect ratio, and the magnitude of the error is 14% for an
aspect ratio of 10 and a total linear strain of 0.3%. This is
the minimum credible strain for water absorption alone and
corresponds to electrodeposition at ambient temperature. The
maximum credible strain is about 0.6% for electrodeposition
at 50 ◦C, leading to a relative error of 28% at an aspect
ratio of 10. In contrast, relative errors in structure width
are proportional to the width of the PMMA features bounding
the structure when the PMMA widths are small compared to
the height. In this case, relative errors grow with increasing
strains, but they do not depend on the structure height.
Limiting the width of PMMA features defining a metal
structure is therefore highly beneficial in reducing dimensional
errors.

PMMA swelling also limits the maximum producible
aspect ratio of isolated linear metal structures. For a strain
of 0.3%, the maximum aspect ratio is about 72; this drops
to 36 for a strain of 0.6%. These are the maximum possible
aspect ratios because each top-surface sidewall displacement
exceeds half the width of the mould cavity for still larger
aspect ratios, and the top of the cavity simply closes. Larger
aspect ratios may be obtained only if the widths of the PMMA
features bounding the cavity are much less than five times the
structure height. Swelling additionally limits the maximum
aspect ratio of long PMMA features for which buckling does
not occur. The maximum aspect ratio of such features is about
20 for a strain of 0.3%; it is only about 14 for a strain of 0.6%.

Dimensional errors for simple holes and posts are again
proportional to the product of the strain and thickness when the
radius is large compared to the thickness, but are proportional
to the strain and the radius when the radius is small. As such,
both holes and posts exhibit relative dimensional errors that

are proportional to the structure aspect ratio only when the
aspect ratio is small. Relative errors for these geometries are
proportional to the total strain, but are independent of both the
radius and height when the aspect ratio is large.

Axisymmetric metal structures produced using annular
features in a PMMA mould exhibit dimensional errors that
depend strongly on whether the sidewall of interest is an inner
or outer radius. Top-surface errors on the metal inner radius
are always positive and are always large when the radius
is larger than the structure height. These errors exhibit a
minimum for some optimum width of the PMMA feature
that depends only on the radius. In contrast, errors on a
metal structure outer radius may be either positive or negative
depending on the radius and width of the PMMA feature.
These top-surface errors thus vanish for some optimum feature
width that depends only on the radius. As a result of this
disparity between inner and outer radii, curved metal structures
will be tapered, narrowing at the top, but they will also be
skewed from the vertical such that the top surface is displaced
radially outward.

All of these results are based on an assumption that
the PMMA reaches the equilibrium strain early in the
electrodeposition period. Thermal diffusivities of PMMA
are fairly large, so thermal equilibrium is usually reached
within hours. Diffusivities of water in PMMA are very small,
however, so equilibrium strains due to water absorption may
not be reached for many days when the resist thickness is
large and the electrodeposition temperature is low. In these
cases, transient swelling may occur throughout the deposition
process, and dimensional errors may be reduced significantly.
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